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Nucleation phenomena in lattice gas models of simple and chain molecules confined in slitlike pores are
studied using Monte Carlo methods. Finite-size scaling is used to investigate the nature of phase transitions
accompanying the formation of layers at the pore walls. It is demonstrated that nucleation leads to the sym-
metry breaking and the formation of nuclei at one wall only.
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I. INTRODUCTION

The formation of finite clusters in supersaturated vapors is
a well-established phenomenon �1–3�, which has been inten-
sively studied by computer simulation methods �4–6�, de-
spite serious problems and difficulties. Among these prob-
lems are the inherent instability of small clusters in an open
system and finite-size effects �4,7�. One of the consequences
of finite-size effects is the formation of droplets of different
shapes �8,9�. At low densities the circular �spherical� droplets
minimize the interfacial contribution to the free energy in
two �three� dimensions. At higher densities the coexisting
phases consist of bands or rings around the periodic torus.

The phase behavior of confined fluids differs from that of
bulk fluids. Capillary condensation merely involves modifi-
cation of the bulk transitions, but wetting and layering tran-
sitions arise solely from the presence of wall-fluid interfaces.
Nucleation is a precursor of the first-order transition. It is a
thermally activated process that depends exponentially on
the height of the free-energy barrier associated with the for-
mation of the critical nucleus �10�. This barrier is very sen-
sitive to even small changes in environment—e.g., the pres-
ence of walls.

Recently, the results of molecular dynamics simulations
of nucleation in slitlike pores were reported �11,12�. It was
found that the strength of the fluid-wall attractive interac-
tions can strongly affect the process of nucleus formation. If
the attraction is very weak, nuclei tend to form in the interior
of the pore. When the attraction is strong, nuclei are formed
at the walls and their formation originates from two sources:
surface diffusion of adsorbed particles at the wall and the
deposition of clusters formed in the interior of the pore. The
change of the mechanism of nucleation at a single wall due
to the change of the fluid-wall attraction was also stressed by
Toxvaerd �13�. He found that for weak adsorbing potential a
depletion zone at the wall appears and the heterogeneous
nucleation is suppressed. Quite recently, Page and Sear �14�
used Monte Carlo simulations to study the nucleation in slit-
like pores closed at one end and found that the nucleation
often proceeds via two steps: nucleation inside the pore and
nucleation outside the pore. The rates of these two nucleation
processes have opposing dependences on the pore size, re-
sulting in a characteristic pore size at which the nucleation
rate of the new phase is maximal.

The extension of density-functional-type approaches to
study the properties of critical nuclei formed in slitlike pores

was presented in Refs. �15–17�. It was shown that in the case
of capillary condensation the critical nucleus can either be
attached to one of the planes or can bridge the two planes,
depending on the intermolecular interactions and thermody-
namic conditions. In other words, the nucleation may lead to
symmetry breaking in the system. We note that the symmetry
breaking was also observed in the density functional calcu-
lations of confined Lennard-Jones fluids under constraint of a
constant density �18,19�. The thermodynamic conditions
were such that the fluid at a single wall underwent the first-
order prewetting transition; at higher temperatures, only
symmetric profiles were observed. In our opinion the behav-
ior of density profiles observed in Refs. �18,19�, as well as in
the former canonical ensemble molecular dynamics simula-
tions �20,21�, was driven by the nucleation phenomena.

In the case of strong fluid-wall interactions the capillary
condensation may be preceded by a series of first-order lay-
ering transitions, which take place at the slit-pore walls.
Computer simulations for lattice gas models demonstrated
that the critical temperatures of layering transitions within
consecutive layers increase, but the differences between
them may be very small �22,23�. Therefore the nucleation in
such systems may be a quite complex phenomenon that in-
volves first-order transitions within consecutive layers.

In this work we apply lattice model and Monte Carlo
simulations to study the layering transition and the nucle-
ation within the first layer adjacent to both walls forming a
slitlike pore. Two models are considered. The first one is just
a simple lattice gas in a slit whose walls are at a distance
large enough to ensure that layering transitions at the oppos-
ing surfaces are uncorrelated. Next, we consider the system
in which the confined molecules are chains on a cubic lattice.
In this case the pore width is smaller than twice the chain
length and thus the transitions at the two pore walls are cor-
related. In other words, we intend to study the systems with-
out and with correlations of the transitions at the opposing
walls. Moreover, the choice of the system involving chain
particles has been stimulated by our recent density functional
study of similar off-lattice systems. We have demonstrated
that under certain thermodynamic conditions the density
functional approach may lead to symmetry breaking in the
system and to unusual phase diagrams �24�. One plausible
explanation of the observed behavior was the nucleation of
chain molecules at one pore wall.
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II. MONTE CARLO SIMULATION

We consider a lattice of cubic symmetry. The system is
delimited from top and bottom by impenetrable walls that
constitute the planes i=0 and i=H+1, respectively. The size
of the system in the directions parallel to the walls is L�L.
In the first case we study layering transition in a simple lat-
tice gas confined in the pore of H=4 layers wide. The se-
lected wall-to-wall distance is large enough to consider the
layering at each wall as independent of the transition at an-
other wall. Only the interactions between nearest neighbors
are assumed, and the energy of each interacting pair is �. The
energy of adsorption of particles located within the layers
adjacent to the walls is 2� and zero for all remaining layers.

The second system consists of chains built of M =6 seg-
ments whose first segment J=1 is pinned within the first
layer at one of the walls. In the case of all remaining seg-
ments, 2�J�M, the segment-wall interaction is zero when
the segment is located in any of the layers i=1,2 , . . . ,H. Of
course, the segments cannot penetrate the walls, and hence
the segment-wall interaction is equal to infinity for i=0 and
i=H+1. The pinning of one of the terminating segments to
one of the pore walls does not mean that these segments
cannot move in the OXY plane. In fact, the movement of
those segments in the direction parallel to the pore walls was
allowed and, moreover, those segments were allowed to
“jump” between the walls. The assumed model mimics the
off-lattice model studied in Ref. �24�.

The pore width has been fixed and assumed to be equal to
H=8. Each segment of a chain interacts only with its nearest
neighbors �including the neighbors belonging to the same
chain� with the energy �. The pore is narrower than 2M;
therefore, the straightened chains located at one pore wall
feel the presence of segments located at another wall. Thus,
in contrast to the previous case, the phenomena occurring at
opposite walls are not independent.

Both models were studied by Monte Carlo �MC� simula-
tion methods. To estimate the location of phase boundaries,
simulations in the grand-canonical MC �GCMC� ensemble,
using a hyperparallel tempering algorithm, were performed.
Our calculations followed the method described in Ref. �25�.
However, the majority of runs were carried out in the canoni-
cal MC �CMC� ensemble using a parallel-tempering tech-
nique, outlined in Refs. �25–27�, and with Rosenbluth and
Rosenbluth’s bias for chain molecules �28�. To facilitate
finite-size scaling analysis cells of L ranging between 20 and
80 were used.

Our preliminary simulations indicated that the nucleation
in the pore leads to asymmetric density profiles. In order to
monitor the symmetry breaking we introduced the order pa-
rameter

� = �N1 − NH�/�N1 + NH� , �1�

where Ni is the number of molecules �for lattice gas� or
segments �for chains� pinned at opposing walls, i=1 and i
=H. This order parameter indicates whether there occurs the
formation of phases of different densities at different walls.
In order to investigate the nature of the phase transitions, we

calculated the susceptibility conjugated with our order pa-
rameter,

�L = NkT����2 − ��2�� , �2�

where �¯� denotes the canonical ensemble average. In the
case of a first-order transition the maximum value of suscep-
tibility scales with the system size as �29–31�

�max,L � �0 + �LD, �3�

where �corr�L�=�max�L�−�0. The values of �0 can be esti-
mated from the plot of �max�L� versus LD by extrapolating
the data to L=0. Of course, the system dimensionality D
equals 2 in our case. The information about the structure of
different phases was also obtained from a direct inspection of
snapshots.

We have also carried out some auxiliary �and limited in
their extent� calculations for a slightly modified model in-
volving chains. The pinning of the first segments within the
layers adjacent to the pore walls means that their adsorption
energy is infinite. The modification relied on the assumption
that the energy of the interaction of the first segments located
within the first wall was very large, but finite �e.g., 10��. The
results obtained for the original and for the modified models
were very close, but the convergence of the results in the
latter model was much slower.

III. RESULTS AND DISCUSSION

We begin with a presentation of selected results of GCMC
simulations for the lattice gas in a slitlike pore. Parts �a�–�c�
of Fig. 1 present unweighted histograms P�	� obtained for
the systems of different sizes: namely, for L=10, 20, and 40,
respectively. In the above 	 is the average density, equal to
	=N / �H�L2�, and N is the total number of confined lattice
gas particles.

The histograms presented in Fig. 1 have been recorded at
T�kT /�=0.51, 0.54, 0.57, and 0.60 and at the chemical po-
tential at the coexistence for the layering transition in the
layers adjacent to both pore walls �
 /�=−4.0�. The critical
temperature of this transition equals T��0.567 and results
from the fact that the lattice gas model can be mapped onto
the Ising model �32�. Since the coupling constant of the two-
dimensional lattice gas is equal to one-fourth of that corre-
sponding to the Ising ferromagnet, the critical temperature of
the two-dimensional lattice gas is also 4 times smaller than
the critical temperature of the two-dimensional Ising ferro-
magnet �33�.

At low temperatures the system fluctuates between states
corresponding to almost empty �gaslike� and almost com-
pletely filled �liquidlike� layers at two pore walls �the inner
layers are always almost completely empty�. However, in
addition to the two peaks on the histograms that reflect the
existence of the above-mentioned phases, we observe the
appearance of the third peak at 	=0.25. This peak does not
vanish when the system size increases and corresponds to a
filled layer at one wall and an empty layer at the second wall;
therefore, it characterizes an “intermediate” stage between
the gaslike and liquidlike coexisting phases.

The simulations of the nucleation have been carried out in
the canonical ensemble, keeping the number of confined par-
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ticles constant. We concentrated on studies of the behavior of
the order parameter � that just describe symmetry breaking
in the system. Figure 1�d� shows an example of the distribu-
tion P���. The functions P��� were obtained for a system
size of L=20 and for a density 	=0.125, which corresponds
to the situation of only one layer being half-filled. Of course,
at temperatures higher than the critical temperature of the
first layering transition the distribution of confined particles
is symmetric inside the pore and thus P��� at T�=0.6 is
centered around �=0. At T�=0.5 and 0.55 the histograms
clearly demonstrate that the system “jumps” between two
configurations, each connected with the formation of a liq-
uidlike structure at one of the walls and a gaslike structure at
another wall. In other words, the formation of nuclei occurs
at one wall only and the system loses its symmetry.

For 	�0.25 �i.e., at densities lower than the density of a
completely filled single layer� the formation of nuclei always
occurs only within the layer adjacent to the pore wall. This is
illustrated by the snapshots in Fig. 2. At low 	 nuclei of
circularlike shape are present, while when 	 increases they
assume the shape of stripes running along one of the axes
parallel to the pore wall. For 	�0.25 �for the sake of brevity
the relevant figures have been omitted� the distributions
P��� are qualitatively similar to those from Fig. 1�d�, The
nuclei are still formed at one layer adjacent to the pore wall,
while the layer at the second wall is almost completely filled.
No formation of “droplets” on already adsorbed layer, which
might lead to the formation of “bridges” connecting two
walls, has been observed during our simulations.

In order to understand the nature of the nucleation we
have plotted the dependence of ��� on temperature for vari-

ous system sizes and for densities 	=0.075, 0.375, and 0.25
�see Figs. 3�a�–3�c��. For 	=0.075 and 	=0.375 �parts �a�
and �b�, respectively�, the curves ��� vs T� for different L
cross. This behavior is characteristic �34� of the first-order
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FIG. 1. Parts �a�–�c�: the distributions P�	� from GCMC simu-
lations for the system sizes given in the figure and for 
 /�=−4.0.
The curves are at kT /�=0.6 �solid lines�, 0.57 �dotted lines�, 0.54
�dashed lines�, and 0.51 �dash-dotted line�. Part �d� shows examples
of the distributions P��� from CMC simulations at 	=0.125�,

 /�=−4.0, and kT /�=0.6 �dashed line�, 0.55 �dotted line�, and 0.5
�solid line�.

FIG. 2. Examples of snapshots from CMC simulations at
kT /�=0.5. Part �a� is for 	=0.175 and part �b� is for 	=0.075.
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FIG. 3. Parts �a�–�c�: the dependence of ��� on the temperature
for different system sizes given in the figure. Part �a� is for 	
=0.075, part �b� for –0.375, and part �c� for 0.25. Part �d� shows the
scaling of �corr for 	=0.15 and part �e� the scaling of � for 	
=0.25. The slope of the straight lines is given in the figure.
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phase transition. However, for 	=0.25 �i.e., for a density
equal to the critical point density of the layering transition�
the plotted curved do not cross; i.e., the transition is continu-
ous �see Fig. 3�c��. In fact, the scaling plots of the suscepti-
bilities �Figs. 3�d� and 3�e�� clearly demonstrate that except
for the critical density, 	=0.25, the slope of the log-log plots
is almost exactly equal to 2, the value characterizing the
first-order transition for two-dimensional systems, whereas
for 	=0.25 the slope assumes a value characteristic of a con-
tinuous Ising-like transition �34�. This reflect the develop-
ment of critical fluctuations in the system, and at the critical
density the transition becomes of second order.

The above-presented results lead to conclusions that could
be anticipated considering the properties of confined simple
lattice models �35�. We have decided to include them here
for the sake of a comparison with the behavior of more com-
plex systems involving chain molecules in a confined geom-
etry.

The second series of simulations have been carried out for
confined chain molecules. The density 	 is now 	=NM / �H
�L2�, where N is the total number of confined chain par-
ticles; i.e., NM equals the average number of occupied lattice
vertices in the confined system. The grand-canonical simula-
tions �Fig. 4�a�� show the density distributions P�	� and
demonstrate the coexistence between two phases. Unlike for
the lattice gas, we do not observe “intermediate” peaks on
the histograms, for the system size used. In fact, that addi-
tional peak has occurred for smaller systems �for the sake of
brevity the relevant plots are omitted�, but it disappears when
the system size increases. The reason is that the layers
formed at opposing walls are not statistically independent.
The histograms of � obtained from canonical ensemble
simulations �Fig. 4�b�� again show that the nucleation causes
the symmetry breaking and the formation of “pinned” nuclei
at one pore wall only.

Similarly as in the previous case, the crossing of the
curves ��� versus the temperature for different system sizes
indicates that the nucleation is the first-order transition �Figs.
4�c� and 4�d��. We should note that the crossing of the curves
��� vs T is visible only if L is large enough. In particular, the
system size L=10 is evidently too small �Fig. 4�c�� and
therefore the log-log plots of the susceptibility were obtained
for L�40. For the investigated densities the slope of the
plots ln �corr vs ln�L� is very close to 2, as expected for the
first-order transitions in effectively two-dimensional systems.

In order to understand the observed transformations we
have inspected numerous snapshots of the generated configu-
rations, examples of which are given in Fig. 5. The scenario
of changes during the transition, gained from the snapshots
analysis, is as follows. At low 	 the first-order transition is
associated with the clusters formation at one of the walls. At
very low densities the clusters assume circularlike shape and
then transform into stripelike-shaped objects when the den-
sity increases. It should be emphasized that those clusters
form only at one wall. When, however, the density exceeds
the density corresponding to a completely filled layer at one
wall, the clustering starts to occur at the second wall. Then, a
similar sequence of clusters at the second wall appears.

At this point we would like to make some comments con-
cerning the applied methodology and, in particular, on the

possibility to study the nature of phase transitions between
different �droplet and stripe� phases in the canonical en-
semble, offered by the use of the order parameter given by
Eq. �1�. In the case of nucleation in strictly two-dimensional
systems, like in the Ising model studied by Pleimling and
Selke �5�, the use of a canonical ensemble allows us to de-
termine the structure and distribution of nuclei in the system,
but does not allow us to make any predictions concerning the
nature of phase transitions. In the case of systems with two
walls, like those considered here, the situation is different.
When the nucleation takes place at one wall, then the par-
ticles accommodated near the second wall can be treated as a
sort of reservoir of particles. Then the situation resembles the
conditions met when the grand-canonical ensemble is used.
The order parameter, Eq. �1�, which provides direct informa-
tion about the asymmetry of particle distribution between the
two sides of the slit, allows us to determine the order of the
phase transitions observed, as demonstrated above. It is quite
likely that the same, or similar, order parameters can be use-
ful to study nucleation phenomena and phase transitions in
different systems, using computer simulations in the canoni-
cal ensemble.
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FIG. 4. The results of simulations of confined chain molecules.
Part �a� shows examples of unweighted histograms P�	� from
GCMC simulations for L=20 and at kT /�=1.5 and 
 /�=−3.4844
�solid line�, kT /�=1.46 and 
 /�=−3.6345 �dotted line�, kT /�
=1.42 and 
 /�=−3.7965 �dashed line�, and kT /�=1.38 and 
 /�
=−3.9767 �dash-dotted line�. Part �b� presents the histograms P���
obtained from CMC simulations for L=40 	=0.075 and at kT /�
=1.25 �solid line�, kT /�=1.30 �dotted line�, and kT /�=1.35
�dashed line�. Parts �c� and �d� display the dependence of ��� on the
temperature for different system sizes: L=20 �dash-dotted lines�; 40
�dashed lines�; 60 �dotted lines�, and 80 �solid lines�. The densities
	 are given in the figure. Part �d� shows the scaling plots of the
compressibility for 	=0.225 �dash-dotted line; the slope equals
1.98�, 	=0.075 �solid line; the slope equals 2.06�, and 	=0.45
�dashed line; the slope is 2.06�.
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Let us summarize the results. Our simulations indicated
that in the case of transitions within the layers adjacent to the
slit-pore walls the formation of nuclei leads to a spontaneous
symmetry breaking. The symmetry breaking is observed for

both lattice models—i.e., for simple lattice gas as well as for
chains pinned at the pore walls. For the first system the tran-
sitions at the opposing pore walls are uncorrelated. For the
second model, the assumed length of the chains �M =6� and
the chosen pore width �H=8� cause the layers formed at the
walls to be not independent. In fact, they are expected to
overlap. The lack and existence of the correlations leads to
important differences between the nucleation mechanism in
the two models considered. In the first model, three states
corresponding to an empty slit, to the layer formed at one
wall, and to two layers formed at opposing walls are equally
probable at the chemical potential corresponding to the co-
existence point. In the case of the second model, however,
the correlations are expected to suppress the state with only
one layer formed at one wall filled and therefore two stable
states exist: two empty layers and two filled layers adjacent
to the opposing walls.

In the models discussed here, the symmetry breaking is a
result of the first-order nature of the transition. If the transi-
tion were of the second order, symmetry breaking would not
occur. Therefore, we can expect that the nucleation scenarios
described should hold if we are within the range of energies
of adsorption corresponding to the wetting regime at a single
wall. Confirmation of the above hypothesis, however, re-
quires further extensive calculations.
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